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ABSTRACT

A major open question about El Niño–Southern Oscillation (ENSO) is what causes ENSO amplitude

asymmetry, with strong El Niños generally larger than strong La Niñas. The authors examine a leading hy-

pothesis—that the ENSO state modifies the fetch and/or wind speed of westerly wind bursts (WWBs) that

create asymmetric forcing and an asymmetric ENSO response. Further, in El Niño forecasts, the number of

WWBs expected increases in the month following a strong WWB when compared with the month preceding

it. Using a conceptual model, a relationship is derived between the magnitude of the westerly wind burst state

dependence on ENSO and ENSO asymmetry. It is found that this relationship between the magnitude of the

state dependence and ENSO asymmetry holds in both the observations and 21 coupled climate models.

Finally, it is found that because of state-dependent westerly wind burst forcing, extreme El Niño events tend

to be of the eastern Pacific variety.

1. Introduction

El Niño–Southern Oscillation (ENSO) has been

widely studied as a major phenomenon of the coupled

atmosphere–ocean system (Clarke 2008; Sarachick and

Cane 2010). Theories that are essentially linear in their

dynamics (Suarez and Schopf 1988; Battisti and Hirst

1989; Penland 1996; Penland and Sardeshmukh 1995;

Jin 1997) correctly capture the major features of

ENSO, the coupling of the atmosphere and ocean and

the transition from El Niño to La Niña. However, one

of the drawbacks of these theories is their inability to

explain certain nonlinear features of ENSO. One of

the major unexplained nonlinearities is the ENSO

amplitude asymmetry—that the largest El Niño
events are generally larger than the largest La Niña
events. Understanding what generates this amplitude

asymmetry and fuels the largest El Niño events is

important because of the large impact that these ex-

treme El Niño events have on society. The largest El

Niño on record in 1997/98 is estimated to have cost

$34 billion (in 1998 U.S. dollars; Nicholls 2001). To ex-

plain the amplitude asymmetry a number of hypotheses

have been put forward, including nonlinear dynamic

heating (Jin and An 1999; Jin et al. 2003), nonlinear

thermocline feedback (DiNezio and Deser 2014), the

atmospheric nonlinearity involved in convection (Kang

and Kug 2002) or the nonlinearity related to wind stress

response to changes in the zonal SST gradient (Liang et al.

2012), biological feedbacks onENSO(Marzeion et al. 2005),

tropical instability waves (Vialard et al. 2001), and multi-

plicative (i.e., state dependent) noise forcing (Lengaigne
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et al. 2004; Eisenman et al. 2005; Gebbie et al. 2007; Chen

et al. 2015). Beyond the tropical Pacific, Indian Ocean

dynamics have also been explored as a possible source of

the amplitude asymmetry (Okumura et al. 2011).

In this paper, we highlight the essential role of the

multiplicative noise feedback on ENSO amplitude

asymmetry. Early research into ENSOnoticed the effect

of the short-time-scale weather [westerly wind bursts

(WWBs)] on the growth of El Niño events (McPhaden

et al. 1988; Yu et al. 2003; Tziperman and Yu 2007).

Because the time scale of WWBs is significantly shorter

than the time scale of ENSO, they have been incorpo-

rated into simple ENSO models as stochastic forcing

(Penland 1996; Penland and Sardeshmukh 1995; Moore

and Kleeman 1999; Zavala-Garay et al. 2008). Addi-

tional research intoWWBs suggested that the frequency

ofWWBs is modulated by the state of ENSO sea surface

temperature anomalies (Eisenman et al. 2005). State-

dependent noise forcing complements and enhances the

low-frequency component of the noise forcing that

successfully forces ENSO in a linear system (Roulston

and Neelin 2000; Levine and Jin 2010). Thus, state-

dependent noise has been incorporated into models

ranging from conceptual to coupled GCMs (Eisenman

et al. 2005; Gebbie et al. 2007; Chen et al. 2015; Perez

et al. 2005; Jin et al. 2007; Gebbie and Tziperman 2009;

Kapur and Zhang 2012). When state-dependent noise

forcing is included in these models, an increase in El

Niño event amplitudes and amplitude asymmetry as well

as a change in the location of the maximum El Niño
temperature anomalies of El Niño emerges (Lengaigne

et al. 2004; Gebbie et al. 2007; Chen et al. 2015; Lopez

et al. 2013).

Beyond and related to the ENSO amplitude asym-

metry is the ENSO spatial asymmetry. In this case, there

appear to be different loci of maximum El Niño vari-

ability but only a single locus for La Niña (e.g., Ashok

et al. 2007; Takahashi et al. 2011; Ren and Jin 2011). La

Niña events are symmetric with the El Niño events that

have a similar location of maximum anomaly; however,

the strongest El Niño events are centered farther to the

east, while there are no similarly eastward-shifted strong

La Niña events (Chen et al. 2015). State-dependent noise

forcing has been shown to preferentially excite these

eastern Pacific El Niño events (Lopez et al. 2013; Lopez

and Kirtman 2014; Chen et al. 2015), affecting the spatial

and amplitude asymmetry of ENSO.

This paper will elucidate the role of multiplicative

noise forcing in creating the El Niño–La Niña asym-

metry by tying together evidence from recharge os-

cillator theory and a conceptual model, reanalysis,

and forecast and Coupled Model Intercomparison

Project (CMIP) models. We will show that increases in

state-dependent noise forcing create more extreme El

Niño events by deriving the relationship using the en-

semble mean dynamical framework for the recharge os-

cillator and that this relationship holds throughout the

CMIP models. The relationship between state-dependent

noise forcing and extreme El Niño events is important for

explaining the El Niño–LaNiña asymmetries.Wewill first

elaborate on the importance of these WWBs in deter-

mining El Niño event magnitude. Using seasonal climate

forecasts, we will then show that the number of WWBs

increases following a strong WWB when compared with

the time preceding the WWB. Then we will explain how

state-dependent noise acts to amplify the sum of the noise

forcing for the largest El Niño events using a conceptual

model.Wewill also show that the amount ofmagnification

is directly related to the amplitude asymmetry. Finally, we

will test this hypothesis in 21 different CMIP5 models us-

ing the recently developed method of Levine and Jin

(2016) to estimate the magnitude of the state-dependent

noise forcing and its corresponding effect onENSO spatial

asymmetry.

2. Data and methods

The results referred to throughout this paper as the

reanalysis use the Hadley Centre Sea Ice and Sea

Surface Temperature dataset (HadISST; Rayner et al.

2003) and 40-yr ECMWF Re-Analysis (ERA-40) winds

(Uppala et al. 2005) and ERA-Interim (Dee et al. 2011)

winds when more recent years are examined. The re-

analysis is supplemented by 300 years of the 1990 control

simulation of the GFDL CM2.1 simulation for com-

parison (Delworth et al. 2006). The conceptual model

used is the same recharge oscillator model as used in

Levine and Jin (2016), integrated for 10 000 years for

each simulation:

dT

dt
52lT1vh1sj[11BH(T)T],

dh

dt
52vT ,

dj

dt
5 rj1w(t) . (1)

In this model, l is a growth rate, v the natural ENSO

frequency, s the noise amplitude, and j is red noise

with a 45-day decorrelation time scale r. The coefficients

in themodel are chosen such that, withB5 0, the ENSO

amplitude and frequency is approximately the same as

observed. El Niño events are defined as a warming that

exceeds 0.5 standard deviations for the Niño-3 box

(averaged SST anomalies within 908–1508W and 58S–
58N), while extreme El Niño events are defined to
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have a peak warming exceeding 2.5 standard deviations.

Changing the thresholds for events and extreme events

results in quantitative but not qualitative changes in the

percentage of extreme El Niños that occur; in addition,

the relationship of ENSO variability with the state-

dependent noise forcing does not fundamentally change.

To calculate the additive noise forcing, we use the

method shown in Levine and Jin (2016) to separate the

deterministic and stochastic components of the zonal

wind stress time series. They systematically remove the

effects of the linear and nonlinear Bjerknes feedback

(Choi et al. 2013) as well as the combination tones of

ENSO with the annual and semiannual cycles from the

zonal wind stress (Stuecker et al. 2013), which make up

the deterministic component of the wind stress. The

residual wind stress is then defined as the stochastic

component:

t
R
5 t2m

1
T2m

2
H(T)T2m

AC
T sin(v

A
t2 t

A
)

2m
SAC

T sin(2v
A
t2 t

s
) , (2)

where t is the wind stress, T the ENSO state, m are the

coupling coefficients, vA is the frequency of the annual

cycle, and tA and ts are the offsets of the annual and

semiannual cycle combination tones, respectively, from

the annual cycle in months. We then separate the addi-

tive and state-dependent components of the stochastic

time series based on their assumptions and results about

the characteristics of the state-dependent noise forcing

[tR 5 sj[11 BH(T)T] in Eq. (1), linear dependence on

ENSO state BT with a threshold nonlinearity related to

convectionH(T), all modifying stochastic forcing j]. The

parameter B is calculated by finding the rate of change

of the standard deviation of tR as a function of T. Full

details of the method can be found in Levine and

Jin (2016).

To examine how a WWB alters future forecasts of

WWBs, we use the NOAA Climate Forecast System

(CFS), version 2. Here we examine two extremeEl Niño
events, the 1997 event, for which ‘‘forecasts’’ are avail-

able through a reforecast experiment (Saha et al. 2014),

and the current 2015 event, for which CFS was used

operationally. To examine the role of state-dependent

noise forcing, we analyze the forecasts generated for the

months of May and July 1997 and April and June 2015,

examining the change in theWWBpredictions following

the large WWBs of June 1997 and May 2015. In the

reforecast experiment, 9-month forecasts are initial-

ized on the four synoptic hours (0000, 0600, 1200, and

1800 UTC) every 5 days giving us 28 forecasts from

May 1997 and 24 forecasts from July. We similarly

choose 24 forecasts from April and June 2015. Using

the CFS Reanalysis (Saha et al. 2010) and following

Levine and Jin (2016), we isolate the total noise forcing

from the zonal wind stress. Following Puy et al. (2015),

we set the intensity threshold for a WWB at one stan-

dard deviation of the wind stress and then choose

minimum time duration to be 3 days. The results pre-

sented here are not qualitatively dependent on the

choice of these thresholds.

The CMIP5 simulations are available from the

PCMDI website. The list of the CMIP5 models and

lengths of simulation used are listed in Table 1. In the

CMIP5 models, to account for the westward El Niño
bias, a Niño-3 equivalent box is used. This box is the

area-averaged SST anomaly between 58S and 58N and

508 longitude long centered on the longitude of largest

variance for the tropical Pacific SST first EOF. The

skewness is defined as follows: S5 (x 0 2 x)3[(x 0 2 x)2]23/2.

The magnitude of the state-dependent noise forcing for

each CMIP5 model is calculated following Levine and

Jin (2016) but using the Niño-3 equivalent box defined

above; the zonal wind stress is averaged over the box

defined by 1608E–1608W and 38S–38N, similar to Levine

and Jin (2016).

3. Generating an extreme El Niño event

The anomalous heat content of the tropical Pacific

Ocean is an important factor in determining the mag-

nitude of an El Niño event (Meinen and McPhaden

TABLE 1. The CMIP5 models and number of years of each

simulation used in the calculation. The numbers in the first column

refer to the numbers in Fig. 8. (Expansions of acronyms are

available online at http://www.ametsoc.org/PubsAcronymList.)

Model piControl RCP4.5 RCP8.5

1 ACCESS1.0 500 95 95

2 ACCESS1.3 500 95 95

3 CanESM2 996 875 380

4 CCSM4 501 674 475

5 CESM1(BGC) 500 95 95

6 CESM1(CAM5) 319 485 285

7 CMCC-CM 330 95 95

8 CMCC-CMS 500 95 95

9 CNRM-CM5 850 295 675

10 CSIRO Mk3.6.0 500 — 95

11 EC-EARTH 452 1140 950

12 FIO-ESM 800 285 95

13 GFDL CM3 800 485 95

14 GFDL-ESM2G 500 95 95

15 GFDL-ESM2M 500 95 95

16 INM-CM4.0 500 95 95

17 IPSL-CM5A-LR 1000 580 580

18 IPSL-CM5A-MR 300 295 —

19 IPSL-CM5B-LR 300 95 95

20 MRI-CGCM3 500 95 95

21 NorESM1-M 501 295 95
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2000). However, a positive heat content anomaly is not

sufficient for producing an El Niño event. The heat

content anomaly is better thought of as the energy res-

ervoir that the El Niño event taps into to warm the

central and eastern equatorial Pacific. To successfully

tap into this reservoir requires additional forcing and the

existence of positive feedbacks (Jin et al. 2006). Many

previous studies have suggested that this forcing comes

fromwesterlywind events that occur as part of theBjerknes

positive feedback. After removing the deterministic ENSO

signal from the zonal wind stress, Levine and Jin (2016)

show that the wind stress residual has properties that are

mathematically similar to state-dependent noise. Figure 1

shows the dependency of the size of the boreal winter

(DJF) SST anomaly in the Niño-3.4 region (58S–58N, 1708–
1208W)versus the sumof the total nondeterministic (noise)

forcing from the previous March through October in the

reanalysis and 300 years of the 1990 control simulation from

GFDL CM2.1. The stochastic portion of the zonal wind

stress during the El Niño growth phase from March to

October is clearly an important part of determining the

eventual strength of the El Niño event. McPhaden et al.

(2006) describe a similar result purely from theobservations.

We gain a similar appreciation for the difference in

the total noise forcing between the regular and extreme

El Niño events by compositing the El Niño events on the
peak SST anomaly and comparing the differences in

forcing before the peak (Fig. 2). While there are only

three extreme El Niño events in the reanalysis dataset,

the similarities between the GFDL CM2.1 composite,

which composites 15 extreme El Niño events, and the

reanalysis composite suggest that the wind stress noise

forcing functions similarly in both. Figures 2a–c show

how the noise forcing is different for regular and ex-

treme El Niño events. The extreme events have a large

sum of noise forcing that is increasing as both the SST

anomaly increases and as the peak of the event ap-

proaches, whereas the regular El Niño events generally

have smaller noise forcing closer to the peak.

However, additive stochastic noise forcing alone

cannot explain the ENSO amplitude asymmetry; the

alternative hypothesis of state-dependent noise forcing

can. Levine and Jin (2016) measured the magnitude and

nature of the state dependence of the noise forcing.

From their formulation,

j5
t
R

11BH(T)T
, (3)

where j is the additive component and tR is the total noise

forcing, we separate the additive and state-dependent

[jBH(T)T] components of the noise forcing.We examine

the fraction of total noise forcing that can be explained by

the state-dependent component (Figs. 2d–f) and find that

it increases as the El Niño event matures. The state-

dependent component is responsible for significantly in-

creasing the noise forcing for the largest El Niño events.

This effect is largest when WWBs occur on an already

growing El Niño event and expanded western Pacific

warm pool (Lopez and Kirtman 2014; Levine et al.

2016, manuscript submitted to Climate Dyn.).

Comparing the strong events of 1982/83 and 1997/98

with the recent weak El Niño in the boreal winter of

2014/15 and the growth of a much larger El Niño later in

2015, we can further see the importance of the additional

wind stress over time relative to a single triggering

westerly wind event (Fig. 3). In February and March

2014, there was a strong westerly wind event that drew

comparisons to 1997. Throughout the rest of 1997, there

were additional westerly wind events with magnitudes

greater than one standard deviation that continued to

force El Niño. The resulting El Niño during the boreal

winter of 1997/98 is the largest on record. This is compared

FIG. 1. The relationship of the total noise forcing betweenMarch and October to the following DJF Niño-3.4 index
for the reanalysis and GFDL CM2.1 for El Niño years.
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FIG. 2.Multiplicative noise plays a large role in producing extremeElNiño events by significantly increasing the noise forcing during the
later portion of theEl Niño growth phase, producing a stronger noise forcing as the peak approaches and producing a larger El Niño event.
(a)–(c) Composites of El Niño events with temperature (solid) and noise forcing (dashed). (d)–(f) El Niño composites showing the

contribution of the state-dependent component of the noise forcing to the total noise forcing.
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with what occurred in 2014, where the initial westerly

wind event was not followed by any additional strong

westerly wind events but in fact an easterly event such

that only a very weak El Niño event occurred (Menkes

et al. 2014; Hu et al. 2014; McPhaden 2015). The year

2015 follows a very similar pattern to 1997, with multiple

strong westerly wind events that continue throughout

the boreal spring and summer and state-dependent

noise forcing contributing increasingly to the strength

of those WWBs as the El Niño event grows in strength.

A different example is the 1982/83 event where there

were not any large westerly wind events until much later

in the year, but the sum of extra westerly wind forcing

over the growth phase is large enough to create a large

El Niño event.

A keymessage is that the westerly wind forcing occurs

mostly as noise forcing and that the frequency and

strength of theseWWBs play a large part in the eventual

evolution of the El Niño event. State-dependent noise

forcing of ENSO implies that as the tropical Pacific cold

tongue warms as a result of previous WWBs, the likeli-

hood of an additional WWB increases. To further il-

lustrate this, we count the number of WWBs in each

forecast from the initialization time until the beginning

of October, normalizing the output into WWBs per

month. The results for May and July 1997 and April and

June 2015 are shown in Fig. 4. We chose these periods to

highlight the changes around the large WWBs of June

1997 and May 2015. As a baseline, using the CFS Re-

analysis, which is available for the period from 1979 to

2009, the average number of WWBs per month is 0.5

(Fig. 5). At a 95% confidence level, based on a two-

sample Kolmogrov–Smirnov test, the ensemble distri-

butions of WWBs per month for all of the sample

months except May 1997 are distinct from the distribu-

tion of the 5-month running mean WWBs per month

from the reanalysis. Reinforcing that WWBs do not al-

ways occur with an anomalously warm tropical Pacific

FIG. 3. A comparison of the total noise forcing (red) and additive noise forcing (black) for the 1982/83, 1997/98,

2014/15, and 2015 (through December 2015) El Niño events. ERA-Interim is used here instead of ERA-40 for the

wind stress to include the recent years. The Niño-3.4 index is shown by the blue lines. Large initial additive forcing

comprises the initial forcing in all cases, but the additional forcing in boreal summer and fall (July–November)

exists mostly in 1982 and 1997. In these cases, the additive component no longer accounts for nearly all of the total

forcing. State-dependent noise forcing acts to amplify the additive noise forcing for greater total noise forcing in

these events.
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cold tongue, the distribution of predictedWWBs in June

2014 is very similar to May 1997 and April 2015 (Fig. 5).

However, unlike in June 1997 and May 2015, in July

2014, an easterly wind burst occurred, and that strongly

affected the evolution of El Niño that year toward a

weaker event (Menkes et al. 2014; Hu et al. 2014;

McPhaden 2015).

In the months preceding the large WWB, both dis-

tributions have slightly elevated mean and median

WWB frequencies, owing to the already positive Niño-
3.4 SST anomalies. In the month after the large WWB,

the forecasted number of WWBs per month is larger

than the month preceding it. The amount that the mean

and median increase is dependent on how much warm-

ing occurs in the next month. This is clearly evident from

the much larger increase in WWBs per month between

May and July 1997, which corresponds with a much

larger increase in Niño-3.4 anomalies, than between

April and June 2015. Also, the forecasts after theWWBs

have greatly increased in the 10th and 25th percentile of

WWBs per month when compared with the months

preceding the WWB, further reinforcing the increased

likelihood of additional WWB events. The 10th per-

centile of forecasts WWBs per month for June 2015 is

approximately the average number ofWWBs permonth

for the reanalysis, while July 1997, in agreement with its

much larger initial anomaly, has the 10th percentile of

forecasted WWBs per month larger than the average

number and the 90th percentile at approximately 5 times

the normal rate of WWB occurrence. These results il-

lustrate the significant shift in rate of WWB occurrence

as the tropical Pacific warms following WWBs. Our

findings with the CFS reforecasts are in agreement with

the findings of Vecchi et al. (2006) on the role of sto-

chastic forcing in the 1997/98 El Niño event and strongly

implicate the role of state-dependent noise forcing in

producing the extreme El Niño event of 1997/98 and the

growing extreme El Niño of 2015/16.

4. State-dependent noise forcing and amplitude
asymmetry

It has previously been suggested that state-dependent

noise forcing can explain ENSO amplitude asymmetry

(i.e., that strong El Niño events tend to be larger than

strong La Niña events; Lengaigne et al. 2004; Eisenman

et al. 2005; Gebbie et al. 2007; Chen et al. 2015). How-

ever, the relationship between the state-dependent

noise forcing and asymmetry has not yet been demon-

strated. Expanding the ensemble mean dynamical

framework of Jin et al. (2007) and Levine and Jin (2010)

based on the conceptual model in Eq. (1), we derive the

dependence of the skewness of ENSO on the magnitude

of the state dependence of the noise forcing B (see the

appendix):

S}
2Ba

ffiffiffiffiffi
s2

r

r

l2 1
1

2
v2

, (4)

FIG. 4. Box-and-whisker plots of the number of WWBs that

occur from the forecasts’ initialization through the beginning of

October in NOAACFS predictionmodels fromMay and July 1997

and April and June 2015 as a function of initial Niño-3.4 anomaly.

The lower and upper limits of the box are the 25th and 75th per-

centiles, the whiskers extend from the 10th to 90th percentiles, the

red line denotes the median, and the red plus denotes the mean

value. These distributions show the role that initial temperature

and previousWWBs have in increasing the likelihood of additional

WWBs as predicted by state-dependent noise.

FIG. 5. Box-and-whisker plot in the style of Fig. 4 for the fore-

casts initialized in June 2014 and for a 5-month running mean of

WWBs per month from the reanalysis.
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where a is an empirically derived closure constant.

Based on this model, the skewness is linearly dependent

on the magnitude of the state-dependence parameter B.

It is also proportional to the noise variance s (how

strongly we force the system) and inversely proportional

to the growth rate l (large positive growth rate, the

greater the oscillatory dynamics impact size and the sys-

tem is less skewed; large negative growth rate, the system

is more strongly damped and less skewed) and frequency

v (higher frequency, less time to charge the oscillator and

less skewed). We can further confirm this by examining

long integrations of the conceptual model at different

values of the state-dependence parameter B (Fig. 6, left).

It is also clear from examining these long integrations that

the frequency of the extremeEl Niño events as a function
of total El Niño events is related to the skewness and the

state dependence (Fig. 6, right). Several studies have

postulated that this state dependence might be related

to the convective nonlinearity (Eisenman et al. 2005;

Gebbie et al. 2007; Levine and Jin 2016; Lopez and

Kirtman 2014). To account for the minimum SST

threshold for convection over the tropical oceans,

Levine and Jin (2016) added a threshold nonlinearity

to the formulation of state-dependent noise forcing.

Figure 6 shows that the effect of this threshold non-

linearity on the amplitude asymmetry is larger for smaller

values of the state-dependence parameter B than for

larger ones, but both cases still show state-dependent

noise forcing as a contributor to skewness.

With this theoretical framework for explaining the

ENSO amplitude asymmetry based on state-dependent

noise, we apply the method for estimating the state-

dependence magnitude from Levine and Jin (2016) to

preindustrial control simulations (piControl) and two

different emissions scenarios, RCPs 4.5 and 8.5 (RCP4.5

and RCP8.5, respectively), from 21 different CMIP5

models. Figure 7 (left) shows that the models’ ENSO

skewness falls within the uncertainty (dark gray is one

standard deviation, and light gray is two standard de-

viations) of the value predicted from the conceptual

model in Eq. (1) based on the each model’s calculated

value of B and constant values for all models of l, v,

and s. More than half of the models’ simulated value of

B in preindustrial control simulations is more than one

standard deviation from the estimate from reanalysis

(Fig. 8 and Table 2). In all but one of these cases, GFDL

CM3, the value of B is too low. In examining the global

warming simulations, most of the models do not have a

consistent trend from the preindustrial control simu-

lation to RCP4.5 to RCP8.5. Three of the models—

ACCESS1.0, CESM1(CAM5), and GFDL CM3—show

significant increases from preindustrial control to both

RCP4.5 and RCP8.5. Of these, only CESM1(CAM5)

has a preindustrial control simulation within the esti-

mated range of B from the reanalysis. ACCESS1.0 has

too small of a simulated B, and GFDL CM3 has too

large of a simulatedB. Threemodels—CCSM4, CNRM-

CM5, and IPSL-CM5A-LR—show a consistent significant

decrease in B from the preindustrial control simulation to

RCP4.5 and RCP8.5. Only two, CCSM4 and CNRM-

CM5, of these three models have a reasonable simulation

ofB in the preindustrial control simulations. IPSC-CM5A-

LR has too weak a simulation of B. Overall, it is clear

that the CMIP5 models do a poor job in simulating

B and have too wide a variance on the change of B due

to climate change to draw any strong conclusions as to

how these processes will be affected. Our attempts at

drawing any strong conclusions about the changes in

B due to climate change are also hampered by the

uncertainty in estimating B.

FIG. 6. Using 10 000-yr simulations in the conceptual model, the linear relationship between B and ENSO

skewness is clear. It is also clear that the number of extreme El Niño events increases as the value of B increases.

The effect of a threshold nonlinearity is also examined resulting from the role of convection in creating state-

dependent noise forcing. The threshold nonlinearity has a minor impact on the results.
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In failing to simulate the state dependence correctly,

the CMIP models then fail to simulate the observed

ENSO skewness. There is not a significant change in the

multimodel ensemble values of B or skewness between

the control and the different emissions scenarios, in

agreement with Zhang and Sun (2014). However, this is

most likely a result of the models’ inability to correctly

simulate the processes associated with state-dependent

noise forcing with some half of the models disagreeing

on the sign of change from the preindustrial control

simulation to the different RCPs.

As expected, B is a good predictor not only of the

skewness but also of the percentage of extreme El Niño
events (Fig. 7, right). Here again, however, there is not a

FIG. 8. The state-dependent noise factor for everymodel examined across the different scenarios

used. The GFDL CM2.1 1990 control simulation is 22 and the CMIP5 multimodel ensemble is 23.

The solid line is the reanalysis estimate, and the dashed lines represent the one standard deviation

values from the reanalysis. Most models fail to simulate multiplicative noise in the preindustrial

simulation. Additionally, the models do not agree on the sign change due to climate change.

FIG. 7. The CMIP5 models follow the theory for the state-dependent noise forcing vs skewness and extreme

events. The multimodel model ensemble shows little difference between the preindustrial control and the RCP4.5

and RCP8.5 emissions scenarios. The reanalysis-calculated values are the black triangles and are also within the

uncertainty. The dark gray shading represents one standard deviation around the predicted value of skewness given

B, and the light gray shading represents two standard deviations.
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significant difference between the different emissions

scenarios and the preindustrial control simulation. This

result is different from the finding of Cai et al. (2014),

who found an increase in the extreme El Niño events

due to global warming. However, we are using an index

based on normalized sea surface temperature anoma-

lies, whereas they defined extremes based on a pre-

cipitation index in the Niño-3 region. Our result is

similar to other studies of ENSO and climate change

that use temperature-based indices (Zhang and Sun

2014; Bellenger et al. 2014).

5. State-dependent noise forcing and spatial
asymmetry

Compositing the extreme El Niño events in the

CMIP5 models shows that the models that have larger

values of B have larger extreme events with the location

of maximum SST anomaly shifted eastward when com-

pared with those models that have smaller values of B

(Fig. 9). This eastward shift of the location of maximum

SST anomaly is closer to the reanalysis extreme El Niño
composite, although still failing to capture the bulk of

the warming between the South American coast and the

cold tongue that is present in the reanalysis. Addition-

ally, while still simulating an El Niño that extends too far
to the west, the extent of the western Pacific El Niño bias
is reduced in these models that have a larger value of B.

Previous analyses of extreme El Niño events suggest

that they are all eastern Pacific (EP)-type El Niños in
contrast to central Pacific (CP)-type El Niños (Takahashi
andDewitte 2015). Previous research has also shown that

state-dependent noise forcing disproportionately affects

EP El Niño events (Lopez and Kirtman 2014). Given the

CMIP5 models’ poor ability to capture state-dependent

noise forcing and extreme El Niño events, it is unsur-

prising that they do not capture the spatial pattern of

ENSO skewness well (Zhang and Sun 2014; Bellenger

et al. 2014). In general, the models have a bullseye of

skewness in the central Pacific cold tongue region and a

region of enhanced skewness along the coast, but these

two regions have a region of zero or negative skewness in

between them (Fig. 10).

While the multimodel ensemble skewness fails to

capture the correct spatial pattern, the better an indi-

vidual model’s ability to generate multiplicative noise,

themore positive (negative) the SST asymmetry is in the

eastern (western) tropical Pacific (Fig. 11). This is a

manifestation of the interaction between noise forcing

and El Niño type. El Niño events cluster into two

(Takahashi and Dewitte 2015) or three (Chen et al. 2015)

types. The transition between different groups happens

as the size of the El Niño event increases. The warm pool

advection that occurs following a WWB produces an in-

creased likelihood of larger following WWBs (Puy et al.

2015; Levine et al. 2016, manuscript submitted toClimate

Dyn.). If additional WWBs do not occur, the warm pool

returns to its climatological values. The zonal advection

of warm pool temperatures into the central Pacific can

produce a central Pacific El Niño event. However, if the

additional noise forcing does occur, the magnitude of

the forcing is likely to be greater because of the state-

dependent component of the noise forcing. Since El

Niño event magnitude is directly related to the total

noise forcing, this additional forcing makes it more likely

to cross over the thresholds that separate the extreme El

Niño events from the normal El Niño events.

6. Summary and discussion

Here we have presented a theoretical explanation for

how state-dependent noise forcing can account for

ENSO amplitude asymmetry and the creation of ex-

treme El Niño events. The theory has been tested in a

linear, damped, noise-forced recharge oscillator model.

Reanalyses and 21 CMIP5 models have been evaluated

and found to fit with the theoretical expectations for

ENSO amplitude asymmetry and frequency of extreme

events. Unfortunately, because of the CMIP5 models’

inability to correctly simulate the state-dependent noise

forcing, we are not able to come to a conclusion about

TABLE 2. The value of B for all models and scenarios used. The

uncertainty of the estimation is a function of data length and

magnitude of B. From estimates using the conceptual model, for

data lengths of approximately 100 years, the uncertainty is ap-

proximately 60.1.

Model piControl RCP4.5 RCP8.5

ACCESS1.0 0.05 0.10 0.17

ACCESS1.3 0.30 0.11 0.17

CanESM2 0.08 20.01 0.08

CCSM4 0.42 0.34 0.33

CESM1(BGC) 0.46 0.25 0.37

CESM1(CAM5) 0.30 0.47 0.53

CMCC-CM 0.06 0.00 0.03

CMCC-CMS 0.07 0.20 0.06

CNRM-CM5 0.35 0.22 0.19

CSIRO Mk3.6.0 0.05 — 20.03

EC-EARTH 0.07 0.14 0.18

FIO-ESM 0.39 0.28 0.36

GFDL CM3 0.58 0.68 0.73

GFDL-ESM2G 0.15 20.02 0.23

GFDL-ESM2M 0.36 0.38 0.32

INM-CM4.0 0.08 0.06 0.08

IPSL-CM5A-LR 0.03 20.04 20.10

IPSL-CM5A-MR 0.12 20.01 —

IPSL-CM5B-LR 0.18 0.04 0.07

MRI-CGCM3 0.21 0.05 0.34

NorESM1-M 0.23 0.05 0.18
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the potential changes to extreme El Niño events in terms of

SSTanomalies due to globalwarming (Bellenger et al. 2014).

We find that the CMIP5 models that best simulate

state-dependent noise do a better job of simulating the

broad spectrum of El Niño events, and in particular, in

the models with better state-dependent noise, the ex-

treme El Niño events occur farther to the east and are

more asymmetric than those models that fail to simulate

state-dependent noise forcing, in agreement with the

single-model studies of Lopez and Kirtman (2014),

Chen et al. (2015), and Takahashi and Dewitte (2015).

The relationship between these two nonlinearities,

state-dependent noise forcing and spatial asymmetry, in

the ENSO system is related to the changing of relative

importance of the different feedbacks throughout the

equatorial Pacific. In the central Pacific, the zonal ad-

vection feedback dominates, while in the eastern Pacific

the thermocline feedback dominates (Chen et al. 2015).

State-dependent noise encapsulates the response of

convection to the advection of the western Pacific warm

pool (Puy et al. 2015; Levine et al. 2016, manuscript

submitted to Climate Dyn.). Since B measures how

strongly the SST–wind–precipitation feedback responds

to the initial wind stress noise, we expect that the trop-

ical mean state biases impact these results. In agreement

with Zhang and Sun (2014), we find that model simula-

tion of B, and therefore ENSO asymmetry, is strongly

correlated with the equatorial cold tongue bias (Fig. 12).

As the convection shifts and any WWBs that occur be-

come stronger, the thermocline feedback in the eastern

Pacific is more strongly forced. As this feedback kicks in,

the eastern PacificElNiño grows and can cross the extreme

event threshold (Takahashi and Dewitte 2015), physically

linking the state-dependent noise nonlinearity to the spatial

asymmetry. Models that have an overly strong equatorial

cold tongue do not shift convection far enough east often

enough to trigger this response regularly.

Reinforcing the idea that it is the low-frequency

component of the noise forcing that is important for

forcing ENSO (Roulston and Neelin 2000; Levine and

Jin 2010), the sum of the total noise forcing is more

important for determining the eventual size of the El

Niño event than the exact timing of theWWBs as long as

they continue to occur throughout the growth phase of

El Niño. There are large differences in the timing of

the WWBs between the 1982/83, 1997/98, and 2015/16

events, but all three have substantial WWB forcing over

the preceding March–October, which largely explains

the size of the two extreme El Niño events and the

predicted size of the 2015/16 event.

FIG. 9. Composites of extreme El Niño events for the (top) reanalysis and CMIPmultimodel

ensemble (MME) for (middle)B, 0.2 and (bottom)B. 0.2. Themodels with the larger values

ofB have strong extremeElNiño events that have the location ofmaximumSST anomalymore

consistent with the reanalysis.
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Given that the amplitude asymmetry of ENSO can be

well explained by state dependence of noise forcing, we

infer that extreme El Niño events depend not only on

high ocean heat content (Meinen and McPhaden 2000)

but also on the excitation from WWBs (Chen et al.

2015). A single WWB is not enough, but in a state-

dependent system a single WWB makes additional

WWBs more likely to occur. This was seen in the ex-

periment by Lengaigne et al. (2004), who inserted a

WWB into their coupled model in 10 ensemble mem-

bers, leading to an increase in the number of El Niño and
extreme El Niño events that occurred in the experi-

mental ensemble compared with the control ensemble.

They also found that only when the initial WWB was

followed by additional WWBs did the model simulate

extreme El Niños.
A consequence to the finding of the role of state-

dependent noise of the amplitude asymmetry of

ENSO is that the upper limit of the potential pre-

dictability of the extreme El Niño events is reduced.

State-dependent noise forcing of ENSO has already

been shown to increase the forecast spread (Levine

and Jin 2010; Vecchi et al. 2006; Lopez and Kirtman

2014; Levine andMcPhaden 2015). In particular, using

the same conceptual model, Levine and Jin (2010)

found that the growth rate of the second moment was

GR ’2l1 2as2B2/r, increasing the ensemble spread

quadratically in response to any biases in B. However,

it is also worth noting that there is a large spread

between reanalysis products and within model simu-

lations of both l and s, which means that model-

simulated potential predictability could be correct,

dependent on the cancellation of errors from different

sources. This quantification also ignores the seasonal

cycle of ENSO growth rate (Stein et al. 2010;

Dommenget and Yu 2016). The seasonal cycle of

FIG. 11. Spatial correlation of the CMIP5 models’ value of B with the SST skewness in the

tropical Pacific. Regions of statistical significance are stippled.

FIG. 10. The skewness of the SST anomaly for (top)–(bottom) reanalysis andCMIPMME for

preindustrial control, RCP4.5, and RCP8.5. None of theMMEs correctly capture SST anomaly

asymmetry in the equatorial regions.
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ENSO growth rate contributes to the spring pre-

dictability barrier and is more prominent when state-

dependent noise is included (Levine and McPhaden

2015), also considering that a seasonally dependent

growth rate means the timing of the wind stress noise

forcing is also important (Levine and McPhaden

2016). Attempts to further quantify the interactions

between state-dependent noise forcing and the sea-

sonal cycle of ENSO growth rate are ongoing. Since

the largest El Niños are more noise driven than pre-

viously assumed and individual weather events are

unpredictable on seasonal time scales, then extreme

El Niño events are likely to have a larger spread of

potential sea surface temperature anomalies. An ex-

ample of this enhanced uncertainty can be seen by

comparing the spring and summer of 2014 to the

spring and summer of 1997 and 2015. In 2014, an

easterly wind burst occurred, which helped to shut

down the development of an El Niño event after large

WWBs in January–March 2014 led some in the El

Niño forecasting community to believe that an ex-

treme El Niño was going to occur (Menkes et al. 2014;

Hu et al. 2014; McPhaden 2015). In contrast, with

similar Niño-3.4 SST anomalies prevailing, WWBs

occurred in the boreal spring and summer of 1997 and

2015, which aided in forcing the extreme El Niño
events the following winters. These results emphasize

that, in addition to improvements in computer models,

assimilation techniques, and observing systems, re-

search to enhance the utility of seasonal forecasts

should focus on probabilistic as opposed to deterministic

approaches, particularly during the early stages of de-

veloping ENSO events.
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APPENDIX

Derivation of the Dependence of Skewness on B

Starting from the second- and third-order terms

in Levine and Jin (2010), we can add additional

equations to solve analytically for the skewness,

S 5 T03(T02)23/2:

dhT 02i
dt

522lhT 02i1 2vhh0T 0i1 2s(11BhTi)hjT 0i1 2sBhjT 02i,

dhh02i
dt

522vhh0T 0i,

dhh0T 0i
dt

52lhh0T 0i1v(hh02i2 hT 02i)1s(11BhTi)hjh0i1 2sBhjh0T 0i , (A1)

FIG. 12. Spatial correlation of theCMIP5models’ value ofBwith the SST difference from the

model’s tropicalmean SST.Regions of statistical significance are stippled.Models that simulate

the equatorial cold tongue better more accurately simulate B.
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where angle brackets refer to the ensemble mean. By

multiplying (1/3)TdhT 02i/dt the equation for the third-

moment evolution of the temperature is found:

dhT 03i
dt

526lhT 03i1 6vhh0T 02i

1 6s(11BhTi)hjT 02i1 6sBhjT 03i . (A2)

Similarly, by multiplying (1/3)hdhh02i/dt the equation

for the third-moment evolution heat content is found:

dhh03i
dt

522vhh02T 0i . (A3)

Finally, the mixed term dhh0T 02i/dt is solved for by

multiplying hdhT 02i/dt1 (1/2)Tdhh0T 0i/dt:

dhh0T 02i
dt

522lhh0T 02i1 2vhh02T 0i1 2s(11BhTi)hjh0T 0i2 2lhh0T 02i
1 2s(11BhTi)hjh0T 0i1 2v(hh02T 0i2 hT 03i)1 4sBhjh0T 02i , (A4)

which simplifies to the following:

dhh0T 02i
dt

524lhh0T 02i2 2vhT 03i1 4vhh02T 0i

1 4s(11BhTi)hjh0T 0i1 4sBhjh0T 02i.
(A5)

By assuming steady state, d/dt5 0, so from Eq. (A3),

hh02T 0i5 0. (A6)

Substituting into Eq. (A5) and assuming fourth-order

closure condition, hjh0T 0 2i5 0, and hjh0T 0i5 0:

0524lhh0T 02i2 2vhT 03i and (A7)

hh0T 02i52v

2l
hT 03i . (A8)

Substituting into Eq. (A2),

0526lhT 03i2 6v
v

2l
hT 03i1 6sBhjT 03i1 6sBhjT 02i ,

(A9)

which yields the following:

hT 03i5sBhjT 03i1shjT 02i
l2 1

1

2
v2

. (A10)

Returning to Levine and Jin (2010), we find that

dhjT 02i
dt

52(2l1 r)hjT 02i1 2vhjh0T 0i

1 2s(11BhTi)hj2T 0i2 2sB(j2T 02 2 hjT 0i2) .
(A11)

Again assuming steady state, r � l, and closure condi-

tions hjh0T 0i5 0, hjT 0i2 5 0, and hj2T 02i5 2ahT 02i,

052rhjT 02i1 2shj2T 0i2 4sBahT 02i , (A12)

which yields

hjT 02i5 2s

r
(hj2T 0i2 2BahT 02i) . (A13)

From Levine and Jin (2010),

dhj2T 0i
dt

52(l1 2r)hj2T 0i1vhj2h0i1sBhj3T 0i .
(A14)

Again assuming steady state, r � l, and that closure

conditions hj2h0i5 0 and hj3T 0i5 2ahjT 0i,

0522rhj2T 0i1s2BahjT 0i , (A15)

which yields

hj2T 0i5s

r
BahjT 0i . (A16)

From Levine and Jin (2010),

dhjT 0i
dt

52(l1 r)hjT 0i1vhjh0i

1s(11BhTi)1sBhj2T 0i . (A17)

Again assuming steady state, r � l, and that closure

conditions hjh0i5 0 and hj2T 0i5 0,

052rhjT 0i1s , (A18)

which yields

hjT 0i5s

r
. (A19)

Plugging Eq. (A19) into Eq. (A16),

hj2T 0i5s2

r2
Ba . (A20)

Plugging Eq. (A20) into Eq. (A13),
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hjT 02i5 2s

r
Ba

�
s2

r2
2 2hT 02i

�
. (A21)

Assuming the fourth-order closure condition hjT 03i5
2ahjT 0ihT 0 2i and plugging into Eq. (A10),

hT 03i5
24Bas2

r
hT 02i1 2Bas3

r3

l2 1
1

2
v2

. (A22)

Since r3 � r,

hT 03i
hT 02i5

2Bas2

r

l2 1
1

2
v2

. (A23)

Skewness is defined as T 03(T 02)23/2, so we must also

solve for T 02. Assuming steady state in Eq. (A1) and

hh0T 0i5 0 yields

0522lhT 02i1 2shjT 0i1 2sBhjT 02i . (A24)

Substituting in Eqs. (A21) and (A19) and solving for

hT 02i yields

hT 0 2i5
s2

r

�
11 2B2a

s2

r

�

l1 4B2a
s2

r

. (A25)

Taking the square root of Eq. (A25) and r2 � r,

ffiffiffiffiffiffiffiffiffiffiffi
hT 0 2i

p
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

r

l1 4B2a
s2

r

vuuuuut . (A26)

Since

hT 0 3i
hT 0 2i

1ffiffiffiffiffiffiffiffiffiffihT 02ip 5
hT 0 3i

(hT 0 2i)3/2
,

divide Eq. (A23) by Eq. (A26):

S5
hT 03i

(hT 02i)3/2
5

2Ba

ffiffiffiffiffi
s2

r

r

l2 1
1

2
v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 4B2a

s2

r

r
. (A27)

And thus the skewness is linearly dependent on B.

REFERENCES

Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata,

2007: El Niño Modoki and its possible teleconnection.

J. Geophys. Res., 112, C11007, doi:10.1029/2006JC003798.

Battisti, D. S., and A. C. Hirst, 1989: Interannual variability in a

tropical atmosphere–oceanmodel: Influence of the basic state,

ocean geometry and nonlinearity. J. Atmos. Sci., 46, 1687–1712,

doi:10.1175/1520-0469(1989)046,1687:IVIATA.2.0.CO;2.

Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and

J. Vialard, 2014: ENSO representation in climate models:

FromCMIP3 to CMIP5.Climate Dyn., 42, 1999–2018, doi:10.1007/

s00382-013-1783-z.

Cai, W., and Coauthors, 2014: Increasing frequency of extreme El

Niño events due to greenhousewarming.Nat. Climate Change,

4, 111–116, doi:10.1038/nclimate2100.

Chen, D., and Coauthors, 2015: Strong influence of westerly wind

bursts on El Niño diversity.Nat. Geosci., 8, 339–345, doi:10.1038/

ngeo2399.

Choi, K., G. A. Vecchi, and A.Wittenberg, 2013: ENSO transition,

duration, and amplitude asymmetries: Role of the nonlinear

wind stress coupling in a conceptual model. J. Climate, 26,

9462–9476, doi:10.1175/JCLI-D-13-00045.1.

Clarke, A. J., 2008:An Introduction to theDynamics of El Niño and
the Southern Oscillation. Academic Press, 324 pp.

Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Con-

figuration and performance of the data assimilation system.

Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.
Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled

climate models. Part I: Formulation and simulation characteris-

tics. J. Climate, 19, 643–674, doi:10.1175/JCLI3629.1.
DiNezio, P. N., and C. Deser, 2014: Nonlinear controls on the

persistence of La Niña. J. Climate, 27, 7335–7355, doi:10.1175/

JCLI-D-14-00033.1.

Dommenget, D., and Y. Yu, 2016: The seasonally changing cloud

feedbacks contribution to the ENSO seasonal phase-locking.

Climate Dyn., doi:10.1007/s00382-016-3034-6, in press.

Eisenman, I., L. Yu, and E. Tziperman, 2005:Westerly wind bursts:

ENSO’s tail rather than the dog? J. Climate, 18, 5224–5238,

doi:10.1175/JCLI3588.1.

Gebbie, G., and E. Tziperman, 2009: Predictability of SST-

modulated westerly wind bursts. J. Climate, 22, 3894–3909,

doi:10.1175/2009JCLI2516.1.

——, I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Mod-

ulation of westerly wind bursts by sea surface temperature: A

semistochastic feedback of ENSO. J. Atmos. Sci., 64, 3281–

3295, doi:10.1175/JAS4029.1.

Hu, S., A. V. Fedorov, M. Lengaigne, and E. Guilyardi, 2014: The

impact of westerly wind bursts on the diversity and predict-

ability of El Niño events: An ocean energetics perspective.

Geophys. Res. Lett., 41, 4654–4663, doi:10.1002/2014GL059573.

Jin, F.-F., 1997: An equatorial ocean recharge paradigm for ENSO.

Part I: Conceptual model. J. Atmos. Sci., 54, 811–829, doi:10.1175/

1520-0469(1997)054,0811:AEORPF.2.0.CO;2.

——, and S.-I. An, 1999: Thermocline and zonal advective feed-

backs within the equatorial ocean recharge oscillator model

for ENSO. Geophys. Res. Lett., 26, 2989–2992, doi:10.1029/

1999GL002297.

——, ——, A. Timmermann, and J. Zhao, 2003: Strong El Niño
events and nonlinear dynamical heating. Geophys. Res. Lett.,

30, 1120, doi:10.1029/2002GL016356.

——, L. L. Pan, and M. Watanabe, 2006: Dynamics of synoptic

eddy and low-frequency flow feedback. Part I: A dynamic

closure. J. Atmos. Sci., 63, 1677–1694, doi:10.1175/JAS3715.1.

——, L. Lin, A. Timmermann, and J. Zhao, 2007: Ensemble-mean

dynamics of the ENSO recharge oscillator under state-dependent

stochastic forcing. Geophys. Res. Lett., 34, L03807, doi:10.1029/

2006GL027372.

1 AUGUST 2016 LEV INE ET AL . 5497

http://dx.doi.org/10.1029/2006JC003798
http://dx.doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2
http://dx.doi.org/10.1007/s00382-013-1783-z
http://dx.doi.org/10.1007/s00382-013-1783-z
http://dx.doi.org/10.1038/nclimate2100
http://dx.doi.org/10.1038/ngeo2399
http://dx.doi.org/10.1038/ngeo2399
http://dx.doi.org/10.1175/JCLI-D-13-00045.1
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1175/JCLI3629.1
http://dx.doi.org/10.1175/JCLI-D-14-00033.1
http://dx.doi.org/10.1175/JCLI-D-14-00033.1
http://dx.doi.org/10.1007/s00382-016-3034-6
http://dx.doi.org/10.1175/JCLI3588.1
http://dx.doi.org/10.1175/2009JCLI2516.1
http://dx.doi.org/10.1175/JAS4029.1
http://dx.doi.org/10.1002/2014GL059573
http://dx.doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2
http://dx.doi.org/10.1029/1999GL002297
http://dx.doi.org/10.1029/1999GL002297
http://dx.doi.org/10.1029/2002GL016356
http://dx.doi.org/10.1175/JAS3715.1
http://dx.doi.org/10.1029/2006GL027372
http://dx.doi.org/10.1029/2006GL027372


Kang, I.-S., and J.-S. Kug, 2002: El Niño and La Niña sea surface

temperature anomalies: Asymmetry characteristics associated

with their wind stress anomalies. J. Geophys. Res., 107, 4372,

doi:10.1029/2001JD000393.

Kapur, A., and C. Zhang, 2012: Multiplicative MJO forcing of ENSO.

J. Climate, 25, 8132–8147, doi:10.1175/JCLI-D-11-00609.1.

Lengaigne,M., E. Guilyardi, J. P. Boulanger, C. Menkes, P. Delecluse,

P. Inness, J. Cole, and J. Slingo, 2004: Triggering El Niño by

westerly wind events in a coupled general circulation model.

Climate Dyn., 23, 601–620, doi:10.1007/s00382-004-0457-2.

Levine, A. F. Z., and F. F. Jin, 2010: Noise-induced instability in the

ENSO recharge oscillator. J. Atmos. Sci., 67, 529–542, doi:10.1175/

2009JAS3213.1.

——, and ——, 2016: A simple approach to quantifying noise–

ENSO interaction. Part I: Deducing the state-dependency of

the windstress forcing using monthly data. Climate Dyn.,

doi:10.1007/s00382-015-2748-1, in press.

——, andM. J.McPhaden, 2015: The annual cycle in ENSOgrowth

rate as a cause of the spring predictability barrier. Geophys.

Res. Lett., 42, 5034–5041, doi:10.1002/2015GL064309.

——, and ——, 2016: How the July 2014 easterly wind burst gave

the 2015–2016 El Niño a head start. Geophys. Res. Lett.,

doi:10.1002/2016GL069204, in press.

Liang, J., X.-Q. Yang, and D.-Z. Sun, 2012: The effect of ENSO

events on the tropical Pacific mean climate: Insights from an

analytical model. J. Climate, 25, 7590–7606, doi:10.1175/

JCLI-D-11-00490.1.

Lopez, H., and B. P. Kirtman, 2014: WWBs, ENSO predictability,

the spring barrier and extreme events. J. Geophys. Res. At-

mos., 119, 10 114–10 138, doi:10.1002/2014JD021908.

——, ——, E. Tziperman, and G. Gebbie, 2013: Impact of inter-

active westerly wind bursts on CCSM3. Dyn. Atmos. Oceans,

59, 24–51, doi:10.1016/j.dynatmoce.2012.11.001.

Marzeion, B., A. Timmermann, R. Murtugudde, and F.-F. Jin,

2005: Biophysical feedbacks in the tropical Pacific. J. Climate,

18, 58–70, doi:10.1175/JCLI3261.1.

McPhaden, M. J., 2015: Playing hide and seek with El Niño. Nat.

Climate Change, 5, 791–795, doi:10.1038/nclimate2775.

——,H. P. Freitag, S. P. Hayes, B. A. Taft, Z. Chen, andK.Wyrtki,

1988: The response of the equatorial Pacific Ocean to a

westerly wind burst in May 1986. J. Geophys. Res., 93, 10 589–

10 603, doi:10.1029/JC093iC09p10589.

——, X. Zhang, H. H. Hendon, and M. C. Wheeler, 2006: Large

scale dynamics and MJO forcing of ENSO variability. Geo-

phys. Res. Lett., 33, L16702, doi:10.1029/2006GL026786.

Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm

water volume changes in the equatorial Pacific and their re-

lationship to El Niño and La Niña. J. Climate, 13, 3551–3559,

doi:10.1175/1520-0442(2000)013,3551:OOWWVC.2.0.CO;2.

Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello,

S. Cravatte, and G. Cambon, 2014: About the role of westerly

wind events in the possible development of an El Niño in 2014.

Geophys. Res. Lett., 41, 6476–6483, doi:10.1002/2014GL061186.

Moore, A. M., and R. Kleeman, 1999: Stochastic forcing of ENSO

by the intraseasonal oscillation. J. Climate, 12, 1199–1220,

doi:10.1175/1520-0442(1999)012,1199:SFOEBT.2.0.CO;2.

Nicholls, N., 2001: Atmospheric and climatic hazards: Improved

monitoring and prediction for disaster mitigation. Nat. Haz-

ards, 23, 137–155, doi:10.1023/A:1011130223164.

Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011: A

proposed mechanism for the asymmetric duration of El

Niño and La Niña. J. Climate, 24, 3822–3829, doi:10.1175/

2011JCLI3999.1.

Penland, C., 1996: A stochastic model of IndoPacific sea surface

temperature anomalies. Physica D, 98, 534–558, doi:10.1016/

0167-2789(96)00124-8.

——, and P. D. Sardeshmukh, 1995: The optimal growth of

tropical sea surface temperature anomalies. J. Climate,

8, 1999–2024, doi:10.1175/1520-0442(1995)008,1999:

TOGOTS.2.0.CO;2.

Perez, C. L., A.M.Moore, J. Zavala-Garay, and R. Kleeman, 2005:

A comparison of the influence of additive and multiplicative

stochastic forcing on a coupledmodel of ENSO. J. Climate, 18,

5066–5085, doi:10.1175/JCLI3596.1.

Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2015: Modu-

lation of equatorial Pacific westerly/easterly wind events by

the Madden–Julian oscillation and convectively-coupled

Rossby waves. Climate Dyn., 46, 2155–2178, doi:10.1007/

s00382-015-2695-x.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland,

L. Alexandre, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003:

Global analyses of sea surface temperature, sea ice, and night

marine air temperature since the late nineteenth century.

J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of

ENSO. Geophys. Res. Lett., 38, L04704, doi:10.1029/

2010GL046031.

Roulston,M. S., and J. D. Neelin, 2000: The response of an ENSO

model to climate noise, weather noise and intraseasonal

forcing. Geophys. Res. Lett., 27, 3723–3726, doi:10.1029/

2000GL011941.

Saha, S., andCoauthors, 2010: TheNCEPClimate Forecast System

Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, doi:10.1175/

2010BAMS3001.1.

——, and Coauthors, 2014: The NCEP Climate Forecast System ver-

sion 2. J. Climate, 27, 2185–2208, doi:10.1175/JCLI-D-12-00823.1.

Sarachick, E., and M. Cane, 2010: The El Niño-Southern Oscilla-

tion Phenomenon. Cambridge University Press, 369 pp.

Stein, K., N. Schneider, A. Timmermann, and F.-F. Jin, 2010:

Seasonal synchronization of ENSO events in a linear stochastic

model. J. Climate, 23, 5629–5643, doi:10.1175/2010JCLI3292.1.

Stuecker, M. F., A. Timmermann, F. F. Jin, S. McGregor, and

H.Ren, 2013: A combinationmode of the annual cycle and the

El Niño/Southern Oscillation. Nat. Geosci., 6, 540–544,

doi:10.1038/ngeo1826.

Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator

for ENSO. J. Atmos. Sci., 45, 3283–3287, doi:10.1175/

1520-0469(1988)045,3283:ADAOFE.2.0.CO;2.

Takahashi, K., and B. Dewitte, 2015: Strong and moderate non-

linear El Niño regimes. Climate Dyn., 46, 1627–1645, doi:10.1007/

s00382-015-2665-3.

——, A. Montecinos, K. Goubanova, and B. Dewitte, 2011:

ENSO regimes: Reinterpreting the canonical and Modoki

El Niño. Geophys. Res. Lett., 38, L10704, doi:10.1029/

2011GL047364.

Tziperman, E., and L. Yu, 2007: Quantifying the dependence of

westerly wind bursts on the large-scale tropical Pacific SST.

J. Climate, 20, 2760–2768, doi:10.1175/JCLI4138a.1.

Uppala, S. M., and Coauthors, 2005: The ERA-40 reanalysis.

Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi:10.1256/

qj.04.176.

Vecchi, G., A. Wittenberg, and A. Rosati, 2006: Reassessing the

role of stochastic forcing in the 1997–1998 El Niño. Geophys.

Res. Lett., 33, L01706, doi:10.1029/2005GL024738.

Vialard, J., C. Menkes, J. P. Boulanger, P. Delecluse, E. Guilyardi,

M. J. McPhaden, and G. Madec, 2001: A model study of

5498 JOURNAL OF CL IMATE VOLUME 29

http://dx.doi.org/10.1029/2001JD000393
http://dx.doi.org/10.1175/JCLI-D-11-00609.1
http://dx.doi.org/10.1007/s00382-004-0457-2
http://dx.doi.org/10.1175/2009JAS3213.1
http://dx.doi.org/10.1175/2009JAS3213.1
http://dx.doi.org/10.1007/s00382-015-2748-1
http://dx.doi.org/10.1002/2015GL064309
http://dx.doi.org/10.1002/2016GL069204
http://dx.doi.org/10.1175/JCLI-D-11-00490.1
http://dx.doi.org/10.1175/JCLI-D-11-00490.1
http://dx.doi.org/10.1002/2014JD021908
http://dx.doi.org/10.1016/j.dynatmoce.2012.11.001
http://dx.doi.org/10.1175/JCLI3261.1
http://dx.doi.org/10.1038/nclimate2775
http://dx.doi.org/10.1029/JC093iC09p10589
http://dx.doi.org/10.1029/2006GL026786
http://dx.doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2
http://dx.doi.org/10.1002/2014GL061186
http://dx.doi.org/10.1175/1520-0442(1999)012<1199:SFOEBT>2.0.CO;2
http://dx.doi.org/10.1023/A:1011130223164
http://dx.doi.org/10.1175/2011JCLI3999.1
http://dx.doi.org/10.1175/2011JCLI3999.1
http://dx.doi.org/10.1016/0167-2789(96)00124-8
http://dx.doi.org/10.1016/0167-2789(96)00124-8
http://dx.doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2
http://dx.doi.org/10.1175/JCLI3596.1
http://dx.doi.org/10.1007/s00382-015-2695-x
http://dx.doi.org/10.1007/s00382-015-2695-x
http://dx.doi.org/10.1029/2002JD002670
http://dx.doi.org/10.1029/2010GL046031
http://dx.doi.org/10.1029/2010GL046031
http://dx.doi.org/10.1029/2000GL011941
http://dx.doi.org/10.1029/2000GL011941
http://dx.doi.org/10.1175/2010BAMS3001.1
http://dx.doi.org/10.1175/2010BAMS3001.1
http://dx.doi.org/10.1175/JCLI-D-12-00823.1
http://dx.doi.org/10.1175/2010JCLI3292.1
http://dx.doi.org/10.1038/ngeo1826
http://dx.doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2
http://dx.doi.org/10.1007/s00382-015-2665-3
http://dx.doi.org/10.1007/s00382-015-2665-3
http://dx.doi.org/10.1029/2011GL047364
http://dx.doi.org/10.1029/2011GL047364
http://dx.doi.org/10.1175/JCLI4138a.1
http://dx.doi.org/10.1256/qj.04.176
http://dx.doi.org/10.1256/qj.04.176
http://dx.doi.org/10.1029/2005GL024738


oceanic mechanisms affecting equatorial Pacific sea surface

temperature during the 1997–98 El Niño. J. Phys. Ocean-

ogr., 31, 1649–1675, doi:10.1175/1520-0485(2001)031,1649:

AMSOOM.2.0.CO;2.

Yu, L., R. A.Weller, and T. W. Liu, 2003: Case analysis of a role of

ENSO in regulating the generation of westerly wind bursts in

the western equatorial Pacific. J. Geophys. Res., 108, 3128,

doi:10.1029/2002JC001498.

Zavala-Garay, J., C. Zhang, A. M. Moore, A. Wittenberg, M. J.

Harrison, A. Rosati, J. Vialard, and R. Kleeman, 2008:

Sensitivity of hybrid ENSO models to unresolved atmo-

spheric variability. J. Climate, 21, 3704–3721, doi:10.1175/
2007JCLI1188.1.

Zhang, T., and D.-Z. Sun, 2014: ENSO asymmetry in

CMIP5 models. J. Climate, 27, 4070–4093, doi:10.1175/

JCLI-D-13-00454.1.

1 AUGUST 2016 LEV INE ET AL . 5499

http://dx.doi.org/10.1175/1520-0485(2001)031<1649:AMSOOM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(2001)031<1649:AMSOOM>2.0.CO;2
http://dx.doi.org/10.1029/2002JC001498
http://dx.doi.org/10.1175/2007JCLI1188.1
http://dx.doi.org/10.1175/2007JCLI1188.1
http://dx.doi.org/10.1175/JCLI-D-13-00454.1
http://dx.doi.org/10.1175/JCLI-D-13-00454.1

